The DataModeler Package Evolving Insight from Data

Mark Kotanchek

Evolved Analytics

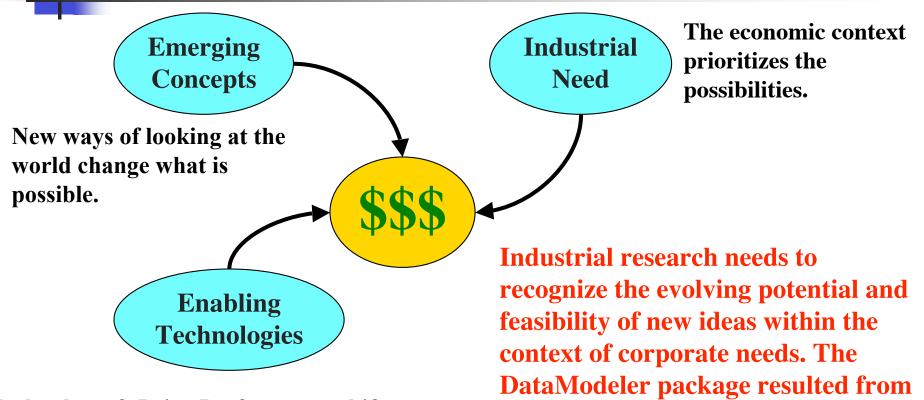
mark@evolved-analytics.com

Agenda

- Motivation
 - Why we care about data modeling
- Technologies
 - Context: Complementary Technologies
 - Symbolic Regression Overview
- Symbolic Regression Examples
 - A Toy Problem
 - Industrial Successes

- DataModeler Package
 Design
 - Design Philosophy
 - Data Exploration
 - Model Development
 - Model Exploration
 - Model Management
 - Utility Functions
 - GUIKit Interface
- ... plus a few diversions

Data Modeling At the Intersection of Opportunity & Need

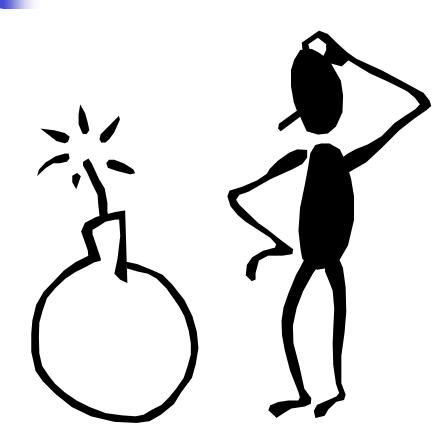


Technology & Price-Performance shifts enable implementing new concepts and implementing old concepts better.

consciously exploring this intersection.

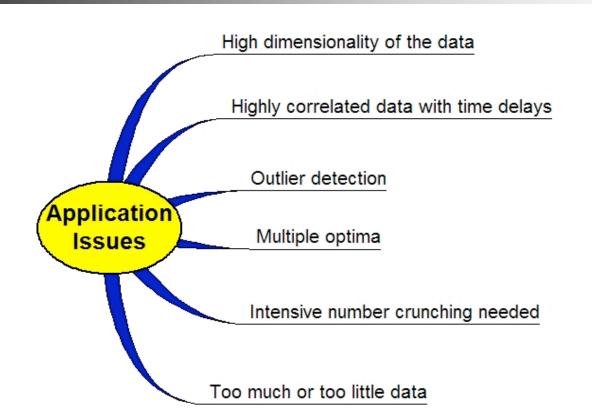
Motivation

"We are drowning in information and starving for knowledge" – R.D. Roger



- Industry is great at collecting data ... and then performing records retention
- Extracting insight from multivariate data is hard
- Time and money is being wasted

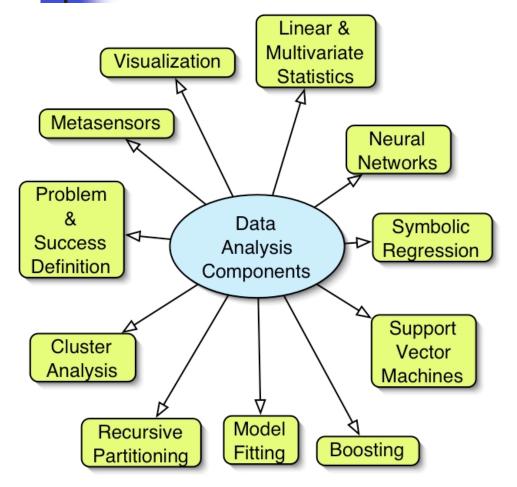
Industrial Data Modeling Issues



"The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!' (I found it!) but 'That's funny" — Isaac Asimov (1920 - 1992)

October 2005 : Wolfram Technology Conference

Empirical Modeling Context



- The role of symbolic regression is to …
 - Facilitate physical/mechanism insight and understanding
 - Summarize data behavior
 - Identify data transforms and metasensors
 - Perform variable selection
 - Enable response surface exploration and optimization
 - Visualize behavior in the form of a symbolic expression
- The overall goal is to achieve speed, accuracy & efficiency.
- Symbolic regression is part of an integrated methodology.

Competing/Complementary Technologies

Linear Models

- Linear in coefficients, not necessarily linear in model
- Often "good enough" and simple
- Well developed criteria and foundations in linear statistical analysis
- Typically easy and fast to develop (unless subtleties are involved)

Neural networks

- Often good performance but lots of "trust me"
- A good reference for nonlinear modeling potential
- The Mathematica Neural Networks package is very good

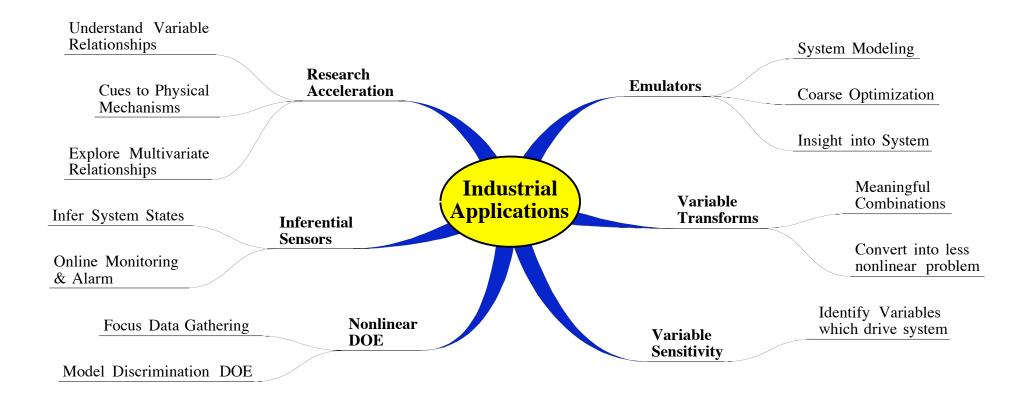
Support Vector Machines

- Useful for data compression to match information content
- Computationally demanding
- Unique nonlinear outlier detection capability

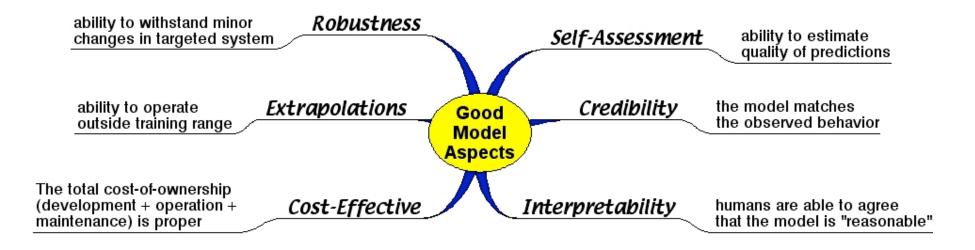
Fuzzy Rules/Recursive Partitioning

- Human interpretability if simple
- Can handle categorical data
- The Machine Learning Framework is strong here

Data modeling impact areas

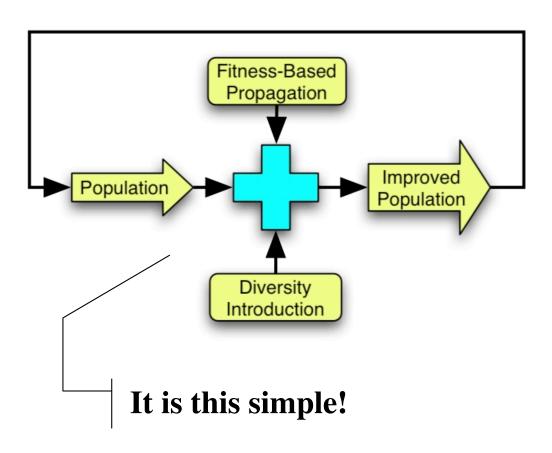


Characteristics of a Good Empirical Model



Symbolic regression has unique abilities in each of these aspects

Evolutionary Computing Theory



Variants:

- Genetic Algorithms (GA)
- Evolutionary Strategies (ES)
- Evolutionary Programming (EP)
- Genetic Programming (GP)
- Particle Swarm Optimization (PSO)
- Gene Expression Programming (GEP)
- etc.

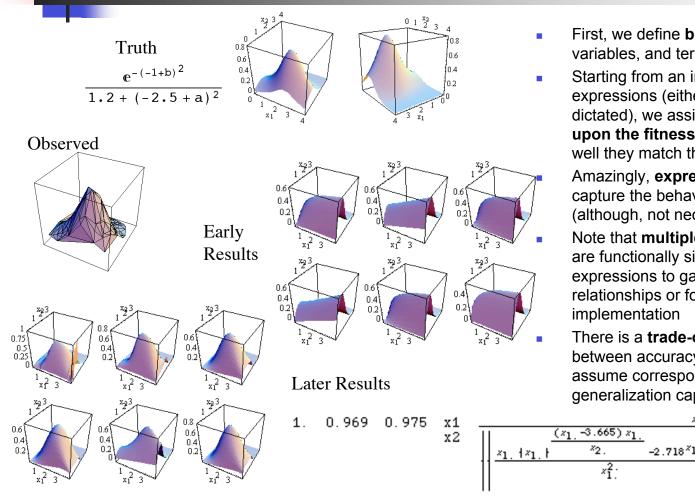
Genetic Programming

- Genome (genetic code) evolves
- Phenotype (realization) judged for fitness
- Goal is to evolve programs which solve problems
- The search space is infinite!
- Symbolic regression is one application of genetic programming

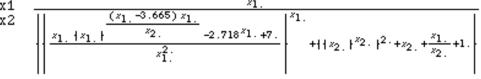
Symbolic Regression

- Goal is to identify expressions which summarize data
- NOT parameter fitting discovery of both structure and parameters
- The search space is infinite!
- In practice, symbolic regression is part of an integrated methodology

Symbolic Regression via **Genetic Programming**

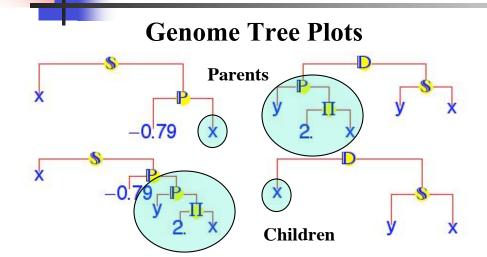


- First, we define **building blocks**: operators, variables, and terminals (constants)
- Starting from an initial **population** of expressions (either randomly synthesized or dictated), we assign breeding rights based upon the fitness of the functions -- i.e., how well they match the observed behavior
 - Amazingly, expressions will evolve which capture the behavior of the underlying data (although, not necessarily the true expression)
 - Note that **multiple solutions** will evolve which are functionally similar; we can sort through the expressions to gain insight into variable relationships or forms appropriate for online
 - There is a trade-off which must be made between accuracy and simplicity (which we assume corresponds to robustness and better generalization capability)



October 2005 : Wolfram Technology Conference

Genetic Programming



Example of Crossover Operation

Phenotypes (Expressions)

Parents

$$-(-0.787701)^{x} + x$$
 $\frac{y^{2x}}{y^{2x}}$

Children

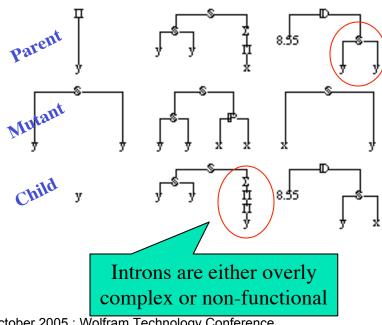
$$-(-0.787701)^{y^2x} + x \qquad \frac{x}{-x+y}$$

October 2005 : Wolfram Technology Conference

- Based on artificial evolution of millions of potential nonlinear functions => survival of the fittest
- Many possible solutions with different levels of complexity
- The final result is an **explicit** (nonlinear) function
- *Can* have better **generalization capabilities** than neural nets
- Low implementation requirements
- Issues include ...
 - Time delays
 - Sensitivity analysis of large data sets
 - Relatively slow development (hours of computation time) Evolved Analytics : Mark Kotanchek

Symbolic Regression via GP

GenomeTreePlot[{parents, MutateSubtree[parents, MaximumTreeDepth \rightarrow 3, MaximumArity $\rightarrow 2$, Data Yariables \rightarrow {r, y}], Crossover[parents]}];



choice of operators

functional building blocks

parsimony pressure

preference for simpler/smaller solutions

diversity operators

modify fit solutions and the relative presence of each mechanism

Nuances...

fitness-based breeding rights

proportional, ranking, elitist, tournament, random, etc.

evolution environment

population size, number of generations, population interaction, fitness criteria, etc.

genetic modifications

- coefficient & structure optimization
- automatically defined functions
 - dynamically determined building blocks

metasensor definitions

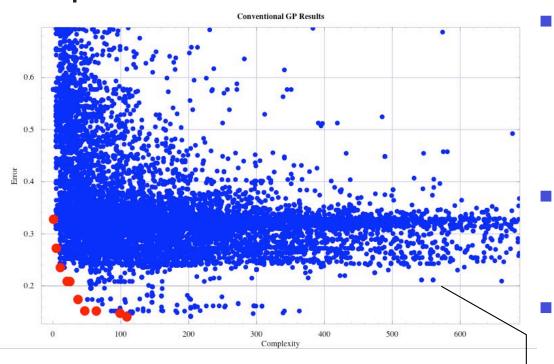
dynamically determined transforms and variable combinations **Evolved Analytics : Mark Kotanchek**

October 2005 : Wolfram Technology Conference

Classic Problems with Genetic Programming

- Relatively Slow Discovery
 - Computational demands are intense
- Selection of "Quality" Solutions
 - Trade-off of Complexity vs. Performance
- Good-but-not-Great Solutions
 - Other nonlinear techniques (e.g., neural nets) outperform in raw performance
- Bloat (overly complex expressions)
 - Parsimony control requires user intervention and is problem dependent

The Pareto Front

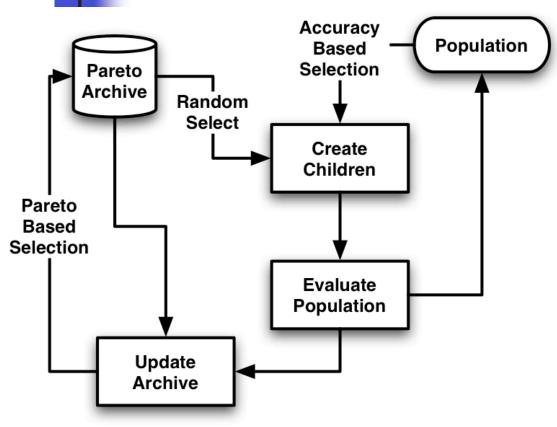


Note that much evolutionary effort is spent exploring high complexity & high fitness regions

- Identifies trade-off surface between competing objectives
 - e.g., performance vs. complexity
- Pareto front solutions are the best "bang-for-thebuck"
- Introns are punished automatically
- How can we exploit?

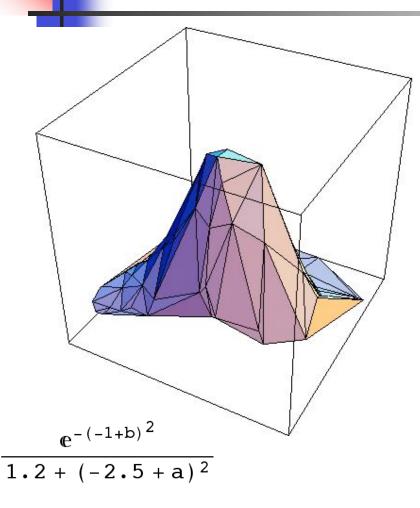
15

Pareto GP Algorithm

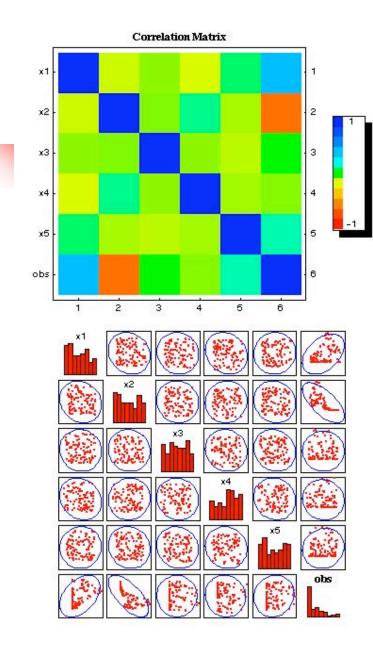


- Select from population based upon model accuracy
- Select randomly from Pareto archive
- Cascades …
 - Pareto archive maintained
 - Population wiped out (fresh genes!)
- Independent runs with independent archives for diversity
- There are other variants along these lines

A Toy Problem for Illustration



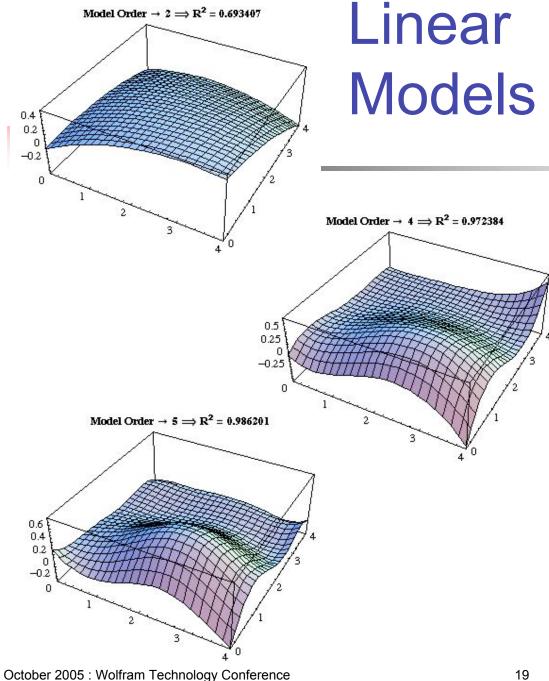
- We sampled a function of two variables at 100 random points in the range [0,4]
- The data matrix has three random spurious variables in the range [0,4]
- Notice that the entire parameter space is not covered

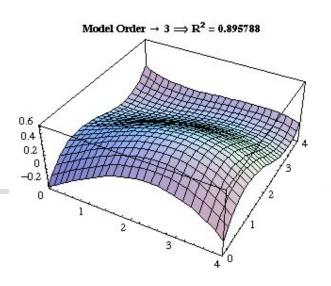


Getting the Zen of the Data

- In this simple example, we could probably guess that only two variables were important for model building
- Correlated inputs can be a problem for some other modeling techniques
- However, lack of correlation to the response does not necessarily correspond to lack of importance

Context-free analysis leads to confidently wrong answers!

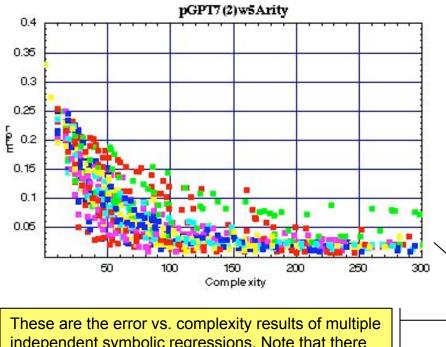




- Here we look at 2nd through 5th order models of the two driving variables (a 3rd order model with all five variables has 56 terms)
- Notice the edges -- these models would likely not extrapolate well!
- However, not much time was required to achieve a poor model!

The Pareto Front: Handling Competing Objectives

No more things should be presumed to exist than are absolutely necessary — W. Occam [1280–1349]



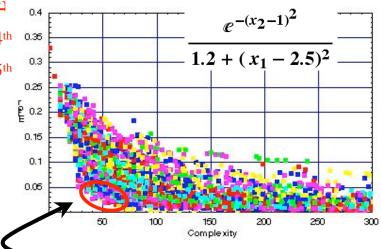
independent symbolic regressions. Note that there is variability from run to run due to the random nature of the evolutionary process.

- Identifies trade-off surface between competing objectives
 - e.g., performance vs. complexity
- Pareto front solutions are the best "bang-for-the-buck"
- Accuracy and simplicity are automatically rewarded
- Pareto Front Benefits
 - Avoids need for a priori combination of objectives into a single metric
 - The shape of the front gives us insight into the problem
 - Identifies multiple candidate solutions simultaneously

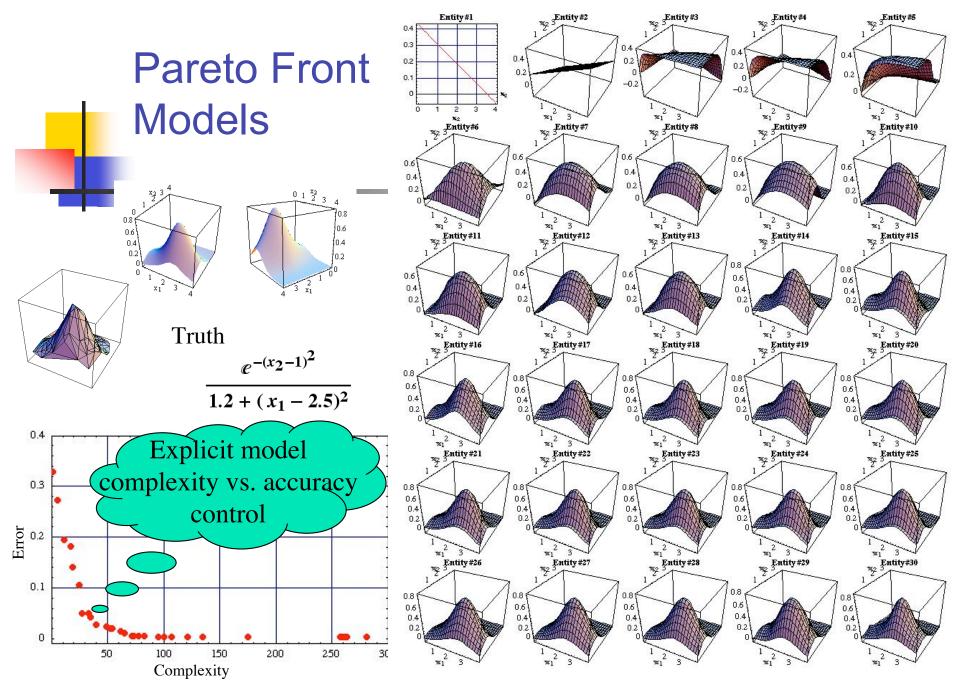
	model	complexity	vars	abs corr	R ²	
1	×2	1	ж2	0.672146	0.45178	
2	$x_1 - x_2$	5	ж1 ж2	0.72785	0.529765	
3	0.293716 ^x 1 x2 ^{x1}	11	ж1 ж2	0.805609	0.649005	
4	0.301214 ^{0.612354} ×1 x2 ^{0.612354} ×1	17	ж1 ж2	0.818587	0.670084	2nd
5	0.344236×1×i [™]	19	ж1 ж2	0.858864	0.737648	2
6	$\left(\frac{\mathbf{x}_1}{\mathbf{x}_2}\right)^{(5-\mathbf{x}_1)\mathbf{x}_2}$	25	ж1 ж2	0.895316	0.801592	3rd
7	2.23888 ^{x₂} (-5 + x ₁) x ₁ $\left(\frac{1}{x_2}\right)^{x_2}$	27	ж1 ж2	0.949914	0.902336	_
8	2.15727 ^{x_2} (-4.89307 + x_1) $x_1 \left(\frac{1}{x_2}\right)^{x_2}$	33	ж1 ж2	0.950524	0.903495	ode
9	1.78744 $\frac{x_2^{1.3144}}{x_2}$ (-5 + x ₁) x ₁ $\left(\frac{1}{x_2}\right)^{x_2^{1.3144}}$	35	ж1 ж2	0.958384	0.9185	ur m
10	2.23888 ^{2 x₂} $(-5 + x_1)^2 x_1^2 \left(\frac{1}{x_2}\right)^{2 x_2}$	40	ж1 ж2	0.972973	0.946676	inea
11	$0.415404^{-2\alpha_2} (5-\alpha_1)^2 \alpha_1^2 \alpha_2^{-2\alpha_2}$	49	ж1 ж2	0.976215	0.952995	ant l
12	1.78744 ^{x₁^{1.16144}} $(-5 + x_1)^2 x_1^2 \left(\frac{1}{x_2}\right)^{x_1^{1.16144}}$	52	ж1 ж2	0.980611	0.961599	vale
13	$(5 - x_1)^2 x_1^2 \left(\frac{4 - x_2}{x_2}\right)^{x_2}$	54	ж1 ж2	0.980731	0.961833	Equivalent linear mode
14	$\frac{2^{\mathbf{x}_{0} \cdot \mathbf{x}_{0} \cdot \mathbf{x}_{0}} \left(\frac{1}{\mathbf{x}_{0}}\right)^{\mathbf{x}_{0} \cdot \mathbf{x}_{0} \cdot \mathbf{x}_{0}}}{3.51424 + (1.96032 - \mathbf{x}_{1})^{2} - \mathbf{x}_{1}}$	62	ж1 ж2	0.985068	0.970359	4 th
15	$(9.56047 + (9 - 2 x_1)^{x_1})^{x_2^{**} - x_2}$	65	ж1 ж2	0.989806	0.979716	5 th
16	$\frac{1.82619^{\mathbf{x}_{1}^{(n+1)}}\left(\frac{1}{\mathbf{x}_{2}}\right)^{\mathbf{x}_{1}^{(n+1)}}}{3.51424+(1.96032-\mathbf{x}_{1})^{2}-\mathbf{x}_{1}}$	72	ж1 ж2	0.994007	0.988051	ŗ
17	$(9 + (9 - 2 x_1)^{x_1} + x_1)^{x_2^{**m} - x_1}$	73	ж1 ж2	0.99426	0.988554	Ę
18	$(8.18505 + (9 - 2 x_1)^{x_1} + x_1)^{x_2^{n+2m} - x_1}$	78	ж1 ж2	0.994281	0.988596	
19	$(9 + (9 - 2 x_1)^{x_1} + 2 x_1)^{x_2^{*' - m_1}}$	83	ж1 ж2	0.994852	0.98973	
20	$(9 + (9 - 2 x_1)^{x_1} + 2 x_1 - x_2)^{x_2^{*''''''''}}$	95	ж1 ж2	0.995965	0.991947	
21	$(8.18505 + (9 - 2 x_1)^{x_1} + 2 x_1 - x_2)^{x_2^{x_1 + 2w_1} - x_2}$	100	ж1 ж2	0.99604	0.992095	<

Evolved Models

- A run tends to fully explore a foundation structure
- Independent evolutions will result in different (but still fit) structures
- Cascading results from independent evolutions seems to be beneficial
- Note that we are not strictly restricted to the Pareto front in selecting models -- many models may be "good enough" and have the benefit of being structurally different and diverse

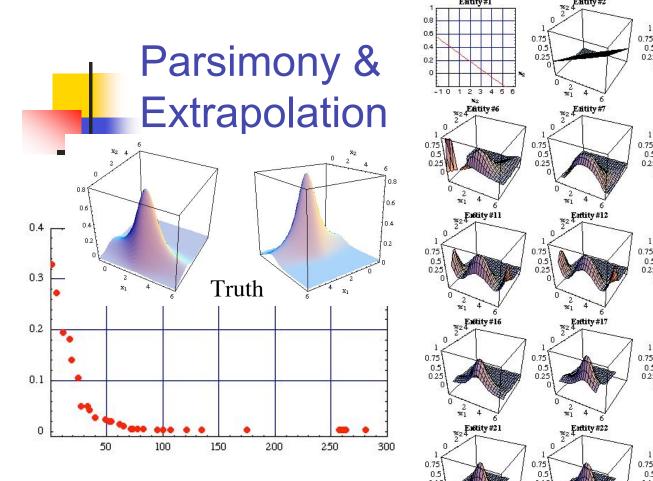


similar performance but diverse structure

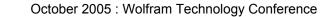


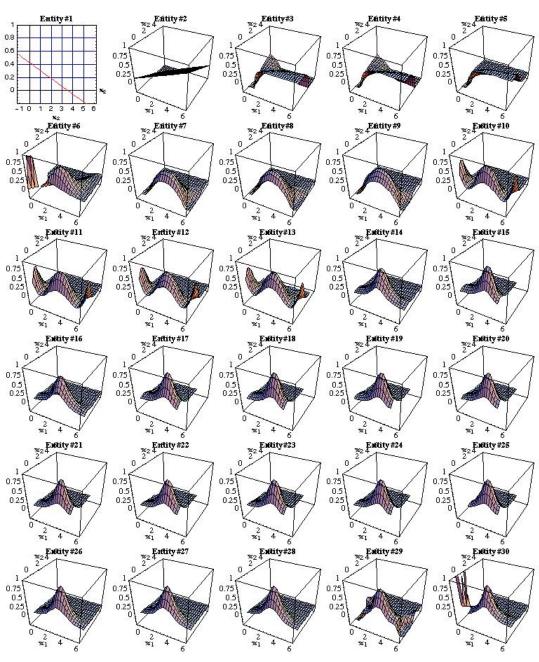
October 2005 : Wolfram Technology Conference

Evolved Analytics : Mark Kotanchek



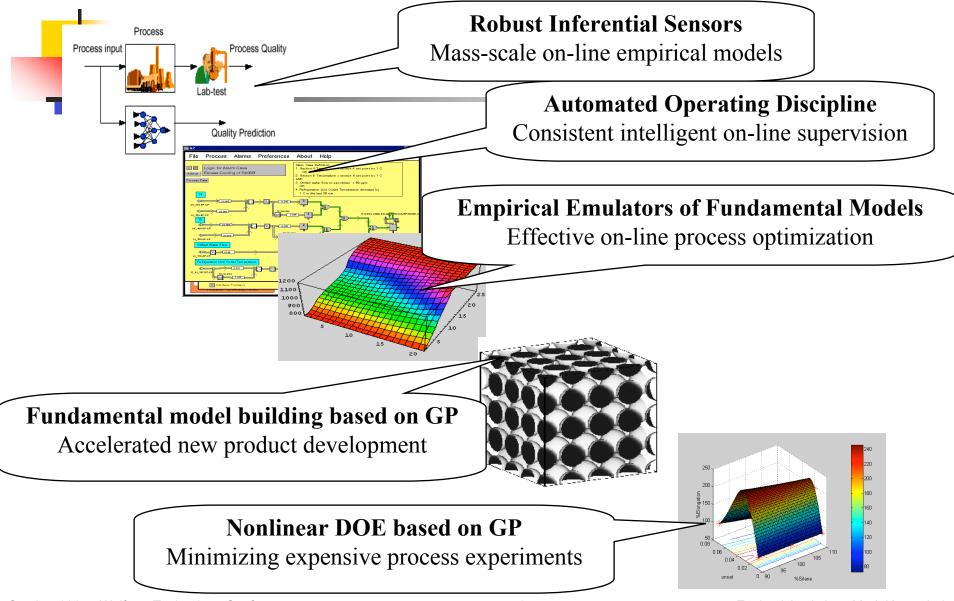
- Note the pathologies at high complexity when extrapolating
- In general, we want to avoid overmodeling!



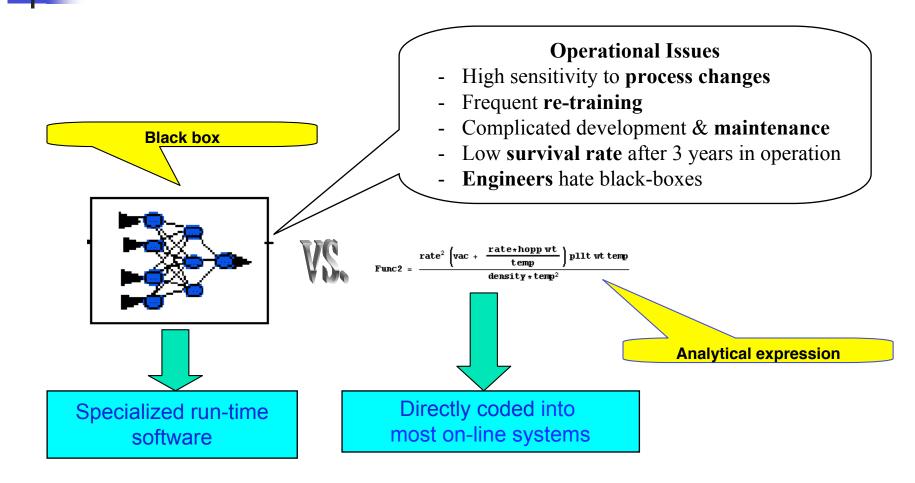


Evolved Analytics : Mark Kotanchek

Key application areas



Neural Net Issues

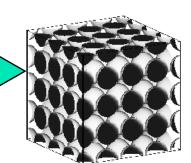


The problem of structure-properties in fundamental modeling

Properties:

- molecular weight
- particle size
- crystallinity
- volume fraction
- material morphology
- etc.

Material structure



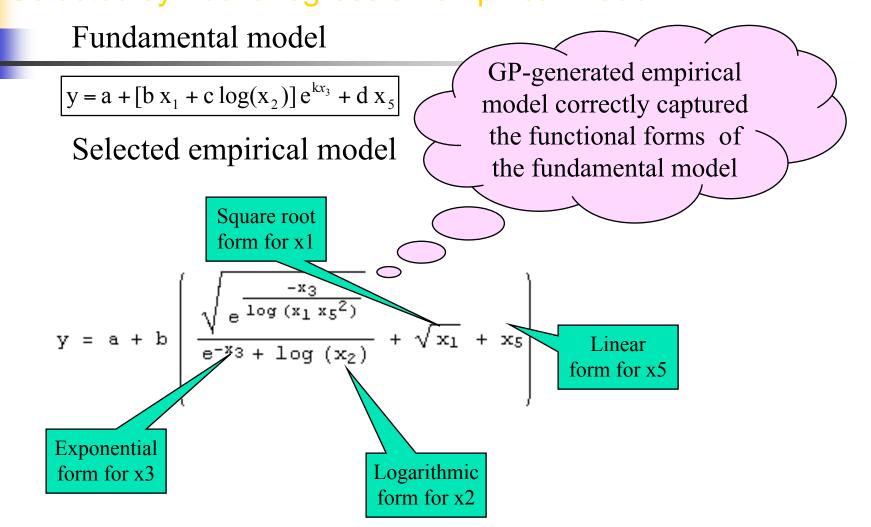
Modeling issues:

- nonlinear interaction
- large number of preliminary expensive experiments required
- large number of possible mechanisms
- slow fundamental model building
- insufficient data for training neural nets

Key modeling effort for new product development

October 2005 : Wolfram Technology Conference

Results from hypothesis search Selected symbolic regression empirical model



GP and Design Of Experiments (DOE) Models Showing Lack of Fit

Situations of Lack of Fit

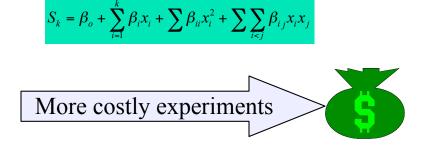
1. Simple factorial DOE Enough experiments to fit first order model

 $y = \hat{a}_o + \sum_{i=1}^k \hat{a}_i x_i + \sum_{i < j} \hat{a}_{ij} x_i x_j$

Classical approach if LOF add experiments to fit second order model 2. A response surface DOE already had all experiments to fit second order model

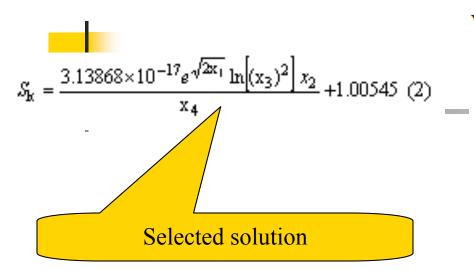
$$S_k = \beta_o + \sum_{i=1}^k \beta_i x_i + \sum \beta_{ii} x_i^2 + \sum \sum_{i < j} \beta_{ij} x_i x_j$$

Classical approach if LOF no alternative (use model as it is)



Suggested approach: Use GP to transform inputs

1. Generate GP models



2. Generate input transforms

Variable transformations suggested by GP model

Original Variable	Transformed Variable
x ₁	$Z_1 = \exp\left(\sqrt{2x_1}\right)$
x ₂	$Z_2 = x_2$
X ₃	$Z_3 = \ln[(x_3)^2]$
x ₄	$Z_4 = x_4^{-1}$

3. Fit response surface model in transformed variables

$$S_{k} = \beta_{o} + \sum_{i=1}^{4} \beta_{i} Z_{i} + \sum_{i < j} \sum_{i < j} \beta_{ij} Z_{i} Z_{j} + \sum_{i=1}^{4} \beta_{ii} Z_{i}^{2}$$

Source	DF	Sum of Square	Mean Square	F Ratio	
Lack of Fit	2	0.00049190	0.000246	2.2554	
Pure Error	2	0.00021810	0.000109	Prob > F-	No Lack Of
Total Error	2	0.00071000		0.3072	(p=0.3037
				Max RSq	
				0.9999	

October 2005 : Wolfram Technology Conference

Symbolic Regression: Summary Benefits

Compact Nonlinear Models

- Compact empirical models can be suitable for online implementation
- Model(s) can be used as an emulator for coarse system optimization

Driving Variable Selection & Identification

- Appropriate models may be developed from poorly structured data sets (too many variables & not enough measurements)
- Identified driving variables may be used as inputs into other modeling tools

Metasensor (Variable Transform) Identification

- Identifying variable couplings can give insight into underlying physical mechanisms
- Identified metavariables can enable linearizing transforms to meld symbolic regression and more traditional statistical analysis
- Metavariables can also be used as inputs into other modeling tools

Diverse Model Ensembles

 The independent evolutions will produce independent models. Independent (but comparable) models may be stacked into ensembles whose divergence in prediction may be an indicator of extrapolation & model trustworthiness. This is an issue in high dimensional parameter spaces.

Human Insight

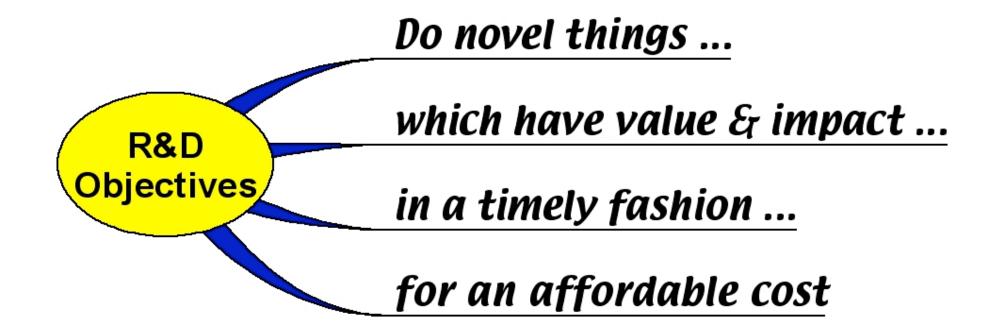
- The transparency of the evolved models as well as the explicit identification of the model complexity-accuracy trade-off is very compelling
- Examining an expression can be viewed as a visualization technique for highdimensional data

There are many benefits to symbolic regression. These are enhanced when coupled with other analysis tools and techniques.

Mathematica Implementation

(finally ... but first a diversion into system building ...)

Corporate Research Objectives

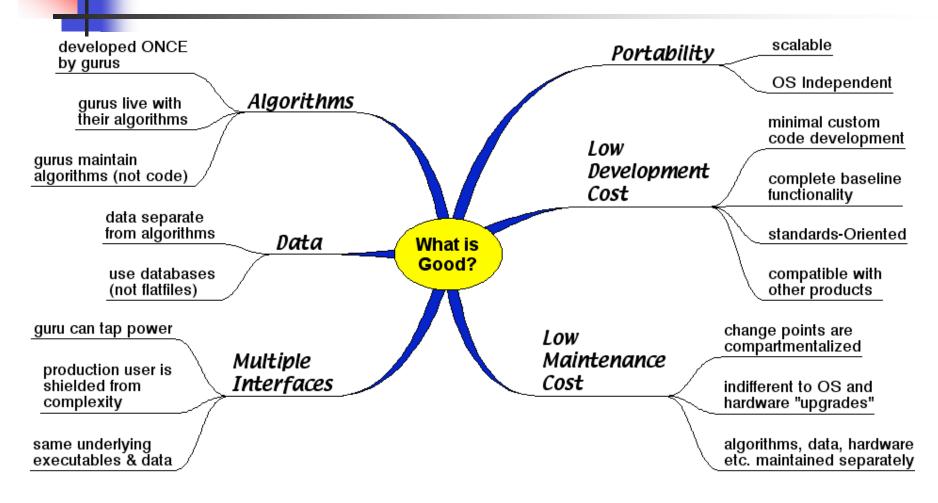


The Researcher Dilemma

The Problem

- We want to learn and do new things -- a.k.a., "research"!
- If we develop & build many useful solutions ...
 - We are rewarded; however,
 - We eventually devote all our time to maintaining those solutions
 - This limits our ability to do new things which will lead to more rewards
- Hence, success tends to be self-limiting!
- How do we resolve the researcher dilemma?

Characteristics of a "Good" Analysis System



Mathematica in the Analysis System Context

- Algorithm/Interface Partitioning
 - Developed package can be exploited in via *Mathematica* notebook, webMathematica, automated script, generated reports, GUI, etc.
 - Algorithms can be maintained in one place once by the guru
- Baseline Functionality
 - Many built-in functions + commercial packages
 - Tools for a variety of user interfaces
 - Supported on variety of compute platforms
- Flexibility
 - Totally scriptable operations
 - Extensible
 - Multiple programming paradigms

Packages & End-User Development

A Foundation For Capturing Value (another diversion)

Why Packages?

- Important for analysis system development
- Benefits
 - Capture knowledge & expertise
 - Makes the experience transfer easy
 - Good even for the individual user
 - Documentation & usage examples
- Rant
 - Package development should be vigorously supported and encouraged by Wolfram Research
 - Students should be writing packages in *Mathematica* not toolboxes for MATLAB!!

The Package Development Process

- Develop algorithms in a notebook
- Transfer algorithms into a package context
 - Gotchas: contexts & hidden inclusions
 - Avoid stomping on other packages and definitions
- Write the help browser documentation
 - Help browser documentation is *easy* using AuthorTools (albeit, not well documented)
 - Ignore the Mathematica Journal article -- it is not that hard!
 - It isn't a package without the help browser!

The Entire Help Browser Build Process

- Write the help in a notebook using the HelpBrowser style
 - Use Section/Subsection/Subsubsection to define browser hierarchy
 - Use SubsectionIcon/SubsubsectionIcon for non-browser hierarchy
 - Content only at the bottom of the browser hierarchy tree (a.k.a., "strict outline form")
- Use AuthorTools : MakeIndex : Edit Notebook Index palette to tag cells with terms/phrases/functions/etc. which should be searchable in the browser
- Save the help notebook into the packageName/Documentation/English directory (a.k.a., the "help directory")
- Use AuthorTools: Make Categories : Make BrowserCategories palette to create a BrowserCategories.m file in the help directory
- Use AuthorTools: Make Index : Make Browser Index palette to create a BrowserIndex.nb file in the help directory
- Choose "Rebuild the Help Index" from the main menu
- You can use the AuthorTools : Make Project if you want to integrate multiple help documentation files

Summary: After writing the help, we only need clicks on the AuthorTools palette buttons (in the right order) and some file renaming

Building the help for an end-user package is THIS simple!!

DataModeler System Design

(really!)

Design Philosophy

Life should be easy for the user

Design Philosophy Implementation

- Complete Tool Suite: tools for ...
 - Data exploration
 - Model development (multiple methods)
 - Model validation and exploration
 - Model management (archival and retrieval)
 - Analysis documentation
- Make the Modeling Easy
 - Standard *Mathematica* function interface for the power user
 - GUIKit interface for the novice (and the lazy/smart power user)
 - Lots of help browser documentation

Package Functions Include...

Utility Functions

SyncFunctionOptions, LabelForm, GridTable, **EvaluationNotebookDirectory**, FileNamesOnly, ArchiveImage, AbsoluteCorrelation, SummaryStatistics, NumericCompile, MapThreadUnbalanced, PolynomialBasisSet, AutoSymbolList, **ParetoFront**, ParetoLayers

Data Exploration

ConfidenceEllipsoid, ConfidenceEllipsoidSelection, ConfidenceEllipsoidSelectionIndices, RobustCorrelationMatrix, **CorrelationMatrixPlot**, **ScatterPlotMatrix**

Model Development & Engineering

SymbolicRegression, RandomEntities, CreateEntityFromGenome,

CreateEntityFromExpression,

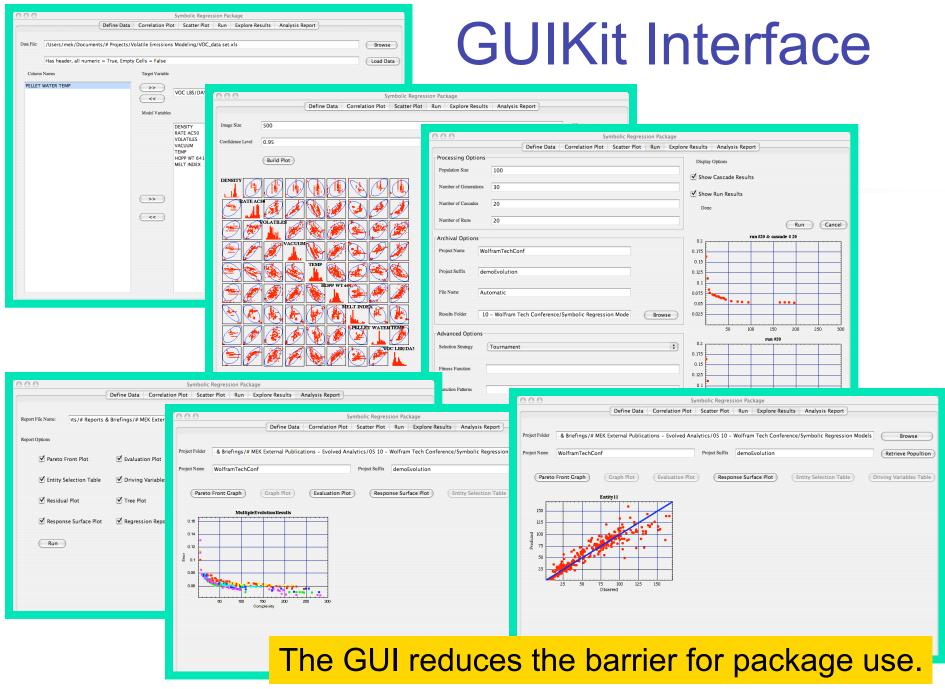
ExtractGenomeSubtrees, GenomeExpressions, SimplifyGenome, **SimplifyEntity**, ReplaceGenome, RemoveIntrons, EvaluateGenome, SelectEntity, MutateSubtree, Clone, Crossover, **AlignEntity**, OptimizeEntity, Model Review

EvaluateModel, ExpressionGraphPlot, ExpressionTreePlot GenomeTreePlot, ModelEvaluationPlot, ModelResidualPlot, ModelRegressionReport, ParetoFrontPlot, ResponseSurfacePlot, EntitySelectionTable, VariablePresence

Model Management

StoreModelSets, RetrieveModelSets, MergeModelSets

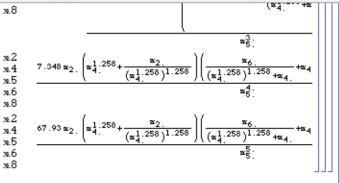
In practice, only the SymbolicRegression function along with model review & management functions are generally used



October 2005 : Wolfram Technology Conference

Evolved Analytics : Mark Kotanchek

Analysis 33 0.163 0.841 0.955 Report 34 0. 0.82 0.955



Driving Variables for Pareto Front Solutions

In[18]:= GridTable[Reverse@Sort[{Length[*], *[[1]], *[[1]] /.variableNameMapping}&/@Split@Sort@Flatten[YariablePresence[*]&/@resu ltFront]],TableHeadings→{Automatic, {"* Models", "Yariable", "Meaning"}}]

analysisReport.nb

371

375

Out[16]//DisplayForm=

000

	# Models	Variable	Meaning
1	34	x.6	HOPP WT 641
2	33	ж2	RATE AC50
3	32	ж.8	PELLET WATER TEMP
4	30	x.4	VACUUM
5	27	ж5	TEMP
б	5	x1	DENSITY
7	1	ж.З	VOLATILES

Entity Evaluation Plot: Predicted vs. Actual

In[17]:= EntityEvaluationPlot[resultFront,inputDataMatrix,responseVect];

Entity#1

Automatically synthesizing the analysis report gives us the best of both worlds: a GUI for data exploration and model development and a notebook for documentation and basis for further exploration.

October 2005 : Wolfram Technology Conference

Summary

- Data modeling is important to industry and has a high impact ... if it is done right
- Symbolic regression and other nonlinear data modeling tools can be an important part of successful modeling
- The DataModeler package provides some tools for nonlinear data modeling for both the expert Mathematica user as well as the novice via a GUIKit interface

References

- M. Kotanchek, G. Smits, and A. Kordon, Industrial Strength Genetic Programming, In GP Theory and Practice (R. Riolo and B. Worzel-Eds), Kluwer, 2003.
- A. Kordon, G. Smits, A. Kalos, and E. Jordaan, Robust Soft Sensor Development Using Genetic Programming, In Nature-Inspired Methods in Chemometrics, (R. Leardi-Editor), Elsevier, 2003.
- Kordon A.K, G.F. Smits, E. Jordaan and E. Rightor, Robust Soft Sensors Based on Integration of Genetic Programming, Analytical Neural Networks, and Support Vector Machines, Proceedings of WCCI 2002, Honolulu, pp. 896 – 901, 2002.
- Kotanchek M., A. Kordon, G. Smits, F. Castillo, R. Pell, M.B. Seasholtz, L. Chiang, P. Margl, P.K. Mercure, A. Kalos, Evolutionary Computing in Dow Chemical, Proceedings of GECCO'2002, New York, volume Evolutionary Computation in Industry, pp. 101-110., 2002
- Kordon A. K., H.T. Pham, C.P. Bosnyak, M.E. Kotanchek, and G. F. Smits, Accelerating Industrial Fundamental Model Building with Symbolic Regression: A Case Study with Structure – Property Relationships, Proceedings of GECCO'2002, New York, volume Evolutionary Computation in Industry, pp. 111-116, 2002

- Castillo F., K. Marshall, J. Greens, and A. Kordon, Symbolic Regression in Design of Experiments: A Case Study with Linearizing Transformations, Proceedings of GECCO'2002, New York, pp. 1043-1048.
- Kordon A., E. Jordaan, L. Chew, G. Smits, T. Bruck, K. Haney, and A. Jenings, Biomass Inferential Sensor Based on Ensemble of Models Generated by Genetic Programming, accepted for GECCO 2004, 2004.
- Smits G. and M. Kotanchek, Pareto-Front Exploitation in Symbolic Regression, In GP Theory and Practice (R. Riolo and B. Worzel-Eds), Kluwer, 2004.
- Kordon A., A. Kalos, and B. Adams, Empirical Emulators for Process Monitoring and Optimization, Proceedings of the IEEE 11th Conference on Control and Automation MED'2003, Rhodes, Greece, pp.111, 2003.

October 2005 : Wolfram Technology Conference